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(1) Problem Studied and Important Results

Geometrically frustrated magnetic materials, in which the topology of the spin lattice leads to frustration
of the spin-spin interactions, have recently be demonstrated to comprise a new class of magncts in which a
number of unique cooperative spin states have been observed. These systems are of particular importance
because they offer a unique venue through which one can examine the consequences of frustration in the
thermodynamic limit in a clean system (i.e. where disorder is not dominant). Understanding such frustrated
systems has implications for systems as diverse as neural networks and Josephson junction arrays.

Although geometrical magnetic frustration has been most extensively studied in materials with
antiferromagnetic nearest-neighbor interactions, the effects of strong frustration have also been found in the so-
called "spin ice" materials in which ferromagnetic as well as dipolar interactions can be frustrated. In these
compounds (such as Dy,Ti,O07, Ho,Ti,07, and Ho,SnyO;), the rare earth spins with a strong single-ion
anisotropy localized on a tetrahedra-based pyrochlore lattice are governed by the same statistical mechanics as
the hydrogen atoms in water ice. In the ground state of ordinary hexagonal ice (Ik), oxygen ions reside at the
center of tetrahedra with two of the four nearest hydrogen ions (protons) situated closer to it that the remaining
two. In spin ice materials, the magnetic rare-earth ions are situated on a lattice of corner-sharing tetrahedra and
their spins are constrained by crystal field interactions to point either directly toward or directly away from the
centers of the tetrahedra. Dipole and ferromagnetic exchange interactions between the spins require that, on
each tetrahedron, two spins point inward and two point outward in exact analogy to the protons in ice. In both
systems, there is a large degeneracy of states which satisfy the energetic requirements and therefore novel low
temperature behavior associated with this frustration.

The spin ice state has been demonstrated experimentally through neutron scattering studies and also
through measurements of the magnetic specific heat, which yield a measured ground state entropy in exact
agreement with the theoretical prediction for the “ice rules" (first codified by Pauling) and experimental results
for ice. While the spin entropy only freezes out below T ~ 3 K in Dy, Ti,07, our recent magnetic susceptibility
studies show a strongly frequency dependent cooperative spin-freezing at T ~ 16 K. In contrast to traditional
spin glasses (in which disorder leads to frustration of local spin-spin interaction), the spin-freezing transition
was shown to be associated with a very narrow range of relaxation times, presumably attributable with the onset
of local ice-like correlations among the spins. Furthermore, rather than quenching the spin-freezing as in spin
glasses, application of a magnetic field is found to enhance the spin ice freezing. The dynamic spin-ice freezing
in Dy,Ti;0 is therefore a rather unusual example of glassiness in a magnetic system. We have studied spin
relaxation in this system as a function of temperature and magnetic field. We find an unusual crossover from
thermal to quantum spin relaxation with decreasing temperature. This crossover is, however, reversed as strong
spin-spin correlations develop at the lowest temperatures during the freezing into the spin ice ground state. We
have studied the spin freezing which develops at lower temperatures (T < 4 K) as a result of this re-entrance and
shown it to be quite different from the spin freezing in ordinary spin glasses in that there is again a very narrow
range of spin relaxation times. We also have studied this system as a function of dilution with non-magnetic
ions, and we find unusual behavior in that dilution first decreases and then increases the spin relaxation time,
resulting in the suppression and subsequent enhancement of the spin freezing with dilution — something which
is possibly unique in glassy magnetic systems.

Due to the purity of the system, spin ice provides an excellent venue in which to study a simplified
mode] of the complex thermodynamics of ice as well as the more general consequences of frustration in the
limit of low disorder. Furthermore, because the frustration is associated with uniaxial spins (rather than
Heisenberg spins), these systems are more analogous to the artificial frustrated spin systems which we are
currently studying under another grant, after initiating studies under this grant.

While most of the research under this grant has been of the spin ice system, the funds have also
supported the initiation of the studies of artificial frustrated systems (created through lithography) as well as
studies of other frustrated magnetic materials which are now being continued with NSF support.
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